Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 254: 121382, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38471202

ABSTRACT

Electrodialysis is a water desalination technology that enables selective separation of ions, making it a promising solution for sustainable water reuse. The selectivity of the process is mainly determined by the properties of ion exchange membranes that can vary depending on the composition of ions in water, such as water uptake and charge density. In this work, we studied selective adsorption of Na+ and K+ ions in various ion exchange membranes considering the effect of solution ion composition on membrane water volume fraction. For that purpose, we conducted membrane adsorption experiments using solutions with Na+ and K+ ions with different ion compositions including Li+, Ca2+ or Mg2+ ions at different concentrations (0.001 - 0.25 M). The experiments showed that with the total ion concentration and the amount of divalent ions in solution, the membrane water volume fraction decreases while the selective adsorption of the smaller (hydrated) K+ ions over the Na+ ions in the membrane increases. We developed a theoretical framework based on Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL) theory to describe the effect of membrane water volume fraction on selective adsorption of the ions by including volumetric effects, such as size exclusion. The developed framework was used to describe ion partitioning results of the membrane adsorption experiments. In addition, the effect of solution ion composition on selective ion removal during electrodialysis operation was evaluated using experimental data and theoretical calculations. The results of this study show that considering volumetric effects can improve the ion partitioning description in ion exchange membranes for solutions with various ion compositions.


Subject(s)
Sodium , Water , Ion Exchange , Adsorption , Ions
SELECTION OF CITATIONS
SEARCH DETAIL
...